I'm looking
for help...
Aidpage is free!

Free downloads: GrantGate®  Federal Money Retriever®

Measurement and Analysis to Quantify the Contribution ofCoal-Fired Utility Boiler Emissions to Ambient PM2.5

Published on AidPage by IDILOGIC on Jun 24, 2005
Administered by:

Department of Energy, All Departmental Locations, All DOE Federal Offices
(see all US Federal Agencies)

Explore all postings for this grant program:
  • Original Grant - Nov 5, 2004
Applications Due:

Nov 30, 2004

total funding: Not Available
max award: none
min award: none
cost sharing, matching: No
number of awards: Not Available
type of funding: Grant

NOTE: Please read the Master Funding OpportunityAnnouncement for completeevaluation criteria and instructions on how to prepare your application.https://e-center.doe.gov/iips/faopor.nsf/1be0f2271893ba198525644b006bc0be/7dd24fd3b334d11985256f32005c0821?OpenDocumentApplications which fit the following description should be submitted underthisfunding opportunity title of Measurement and Analysis to Quantify theContribution of Coal-Fired Utility Boiler Emissions to Ambient PM2.5(DE-PS26-05NT42244-11).In order to assess the potential impact of reducing the emissions of PM2.5orits precursors, the percentage contribution of specific anthropogenicsourcesto the overall PM2.5 mass at specific receptor sites must be determined.Thecurrent approach for determining source contributions is to perform?receptormodeling? studies in which chemical mass balances or similar methods areusedto relate the primary PM2.5 chemical compositions of various emissionsourcesto the bulk PM2.5 composition at the receptor site. The accuracy of suchsource apportionment techniques depends on the ability to obtain uniquechemical signatures for each source or source class. The contributions ofbroad source classes (e.g., wood smoke vs. vehicle exhaust vs. coal boileremissions) at a given site can often be determined because of distinctdifferences in the bulk composition of primary PM2.5 from each sourceclass.However, it is much more difficult to use receptor modeling techniques todetermine the relative contributions of sources whose primary PM2.5compositions are similar; for example, even though selenium is often usedas amarker for coal combustion, oil-fired combustion units can also containenoughselenium to create a significant impact on nearby ambient receptors. Thedominance of secondary ammonium sulfate particles in PM2.5 at Eastern U.S.receptor sites can complicate the analysis even further, since bulk sampleanalysis techniques cannot uniquely determine the sources of either theammoniaor SO2 gases that presumably reacted to form the particles.Advanced analytical techniques, when applied to ambient PM2.5 samples andsource samples, may prove to be extremely valuable in source apportionmentstudies. For example, scanning electron microscopy (SEM) techniques havebeenused to determine the percentage of fly ash (i.e., sphericalaluminosilicate)particles in ambient PM2.5 samples. Since spherical aluminosilicateparticlesare known to result exclusively from high-temperature coal combustion, theSEMtechniques provide a more direct estimate of the contribution of fly ash tooverall PM2.5 mass than techniques that rely on bulk compositioninformation.However, accuracy of PM2.5 source apportionment via SEM techniques is stilluncertain, and the application of this approach is still being developed.There may also be other advanced analytical techniques that can be appliedsuccessfully to quantify the contribution of coal-fired utility boilers toPM2.5 at specific receptor sites. Ideally, in cases where more than onecoalplant is affecting a specific receptor site, the technologies would becapableof determining the differences between the contributions of individual coalplants.Therefore, grant applications are sought to develop advanced analyticaltechniques for quantifying the contribution of specific coal-fired utilityboilers to ambient PM2.5 at specific monitoring sites. Concepts andtechnologies proposed under this Focus Area must show promise of being morereliable and more cost-effective than techniques which utilize informationfrombulk chemical characterization. The purpose of these advancedcharacterization technologies will be to provide information for sourceapportionment studies; however, applications to perform sourceapportionmentmodeling studies or to develop new or improved source apportionmentmodelingalgorithms will not be accepted.

Who can apply:

Anyone/General Public
Other Private Institution/Organization
Private Institutions Of Higher Education
Public And State Controlled Institutions Of Higher Education

Eligible functional categories:
Funding Sources:

University Coal Research

More Information:

Click here to view the Opportunity

If you have problems accessing the full announcement, please contact: using thislink
If you have problems accessing the full announcement, please contact: JoAnn Zysk

Address Info:

U.S. Department of Energy, National Energy TechnologyLaboratory, 3610 Collins Ferry Road (MS-I07) P.O. Box 880 Morgantown, WV26507-0880

Free downloads: GrantGate®  Federal Money Retriever®
Apply for grants and loans! Click here to start